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Abstract
We examine partitions and their natural three-dimensional generalizations,
plane partitions, as models of vesicles undergoing an inflation–deflation
transition. The phase diagrams of these models include a critical point
corresponding to an inflation–deflation transition, and exhibits multicritical
scaling in the vicinity of a multicritical point located elsewhere on the critical
curve. We determine the locations of the multicritical points by analysing
the generating functions using analytic and numerical means. In addition, we
determine the numerical values of the multicritical scaling exponents associated
with the multicritical scaling regimes in these models.

PACS numbers: 05.50.+q, 02.10.Ab, 05.40.Fb, 82.35.−x

1. Introduction

Random surfaces have received considerable attention in the physics literature as models of
fluctuating membranes [1, 12–15]. Closed lattice surfaces in three dimensions are models
of lattice vesicles [30] undergoing an inflation–deflation transition. Simple convex versions of
these models have also been considered, see for example [18] where cubical and rectangular
box lattice vesicles are examined.

In this paper we examine partitions and plane partitions [8] as convex lattice surface
models of two-dimensional and three-dimensional vesicles. The model of plane partition
vesicles is a generalization of the three-dimensional models in [18]. Plane partitions may
be described as the three-dimensional counterparts of partitions, and they can be described
as objects composed of unit cubes stacked into a rectangular corner (see figure 1). Two-
dimensional lattice polygon models of vesicles, including partitions, were introduced by Brak
et al who also examined the tricritical nature of critical points in these models; see [5–7].

A model of plane partitions is a convex version of more traditional three-dimensional
random surface models of lattice vesicles [2, 29, 30]. Unlike the cubical and rectangular box
vesicles studied in [18], there are important conformational entropic contributions to the free
energy in models of plane partition vesicles. These contributions will have an effect on the
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Figure 1. A plane partition. The volume of this plane partition is the total number of unit cubes it
contains. Two unit cubes are adjacent if they share a face. A face is paired if it is incident on two
cubes, otherwise it is unpaired. The total area of a plane partition is the number of unpaired faces.
An edge in a plane partition is regular if it is incident on two unpaired faces, and if these faces are
mutually perpendicular. Otherwise it is irregular. The perimeter of a plane partition is the total
number of regular edges it contains.

phase behaviour in the model, and will give more insight in the role of conformational degrees
of freedom in the thermodynamic behaviour of vesicles undergoing an inflation–deflation
transition. Two dimensional partition polygons and three-dimensional plane partition vesicles
are also simple enough to be studied extensively by numerical and other means, and to serve
as a test bed for the ideas underlying critical scaling in two- and in three-dimensional models
of vesicles.

The phase diagram of partition polygons (see figure 5), suggests that the phase diagram
of plane partitions may be unusual (see figure 6). Partition polygons in an area–perimeter
ensemble undergo an inflation–deflation transition, but the location of this transition is not
coincident with a region of multicritical scaling which is located near a singular point elsewhere
on the critical curve [6, 7, 16] (see section 2.3 and figure 5). Similar observations have been
made in other unrelated lattice models. In particular, the phase diagram of H-bonding self-
avoiding walks shows a similar splitting of the critical and a tricritical point [9, 10, 35]. In this
paper we examine plane partitions and find a similar splitting of the critical point and a region
of multicritical scaling in the vicinity of a singular point elsewhere on the critical curve (see
section 4.1 and figure 6).

If a plane partition is composed of n unit cubes, then we say that it is a plane partition of
n, or that it has volume n (see figure 1). Plane partitions of n were studied by MacMahon in
1887 [25, 27] who discovered the generating function

Pp(q) =
∞∑

n=0

pp(n)pn =
∞∏

j=1

1

(1 − pj )j
(1)

where pp(n) is the number of plane partitions of n (or with volume n), and where we call the
generating variable p a ‘volume generating variable’. We define pp(0) = 1 to be consistent
with product generating function above.

Plane partitions played a key role in the alternating sign matrix conjecture [23, 38] and
have been the subject of intensive research in the mathematics literature, for a history, see
for example [8]. In the physics literature one may find connections to models in statistical
mechanics, such as square ice and the six vertex model [23, 39].



Plane partition vesicles 11173

Asymptotics for pp(n) can be determined from equation (1). This was for example done
by Wright in 1931 [36], and the result is the asymptotic formula

pp(n) ≈ K eCn2/3

n25/36
(2)

obtained by a saddle-point method using a Mellin transform, where K = 0.400 99 . . . and
C = 2.009 45 . . . .

The surface area of a plane partition can be defined as follows. Each unit cube in a plane
partition has six faces (unit squares) and twelve edges (unit length line segments) incident
on two faces each. A face is paired if it is incident on two unit cubes in the plane partition;
otherwise it is unpaired. The surface area of a plane partition is the total number of unpaired
faces. One may similarly define a perimeter for plane partitions. An edge in a unit cube in a
plane partition is regular if it is incident on two unpaired faces, and if these faces are mutually
perpendicular. Otherwise it is not regular. The number of regular edges in a plane partition
is its perimeter, and it may be interpreted as a measure of the total absolute curvature of the
plane partition.

Define pp(n,m, k) to be the number of plane partitions of volume n, area m and perimeter
k. For example, pp(1, 6, 12) = 1 and pp(2, 10, 16) = 3. Define pp(0, 0, 0) = 1 trivially to
be consistent with the generating function in equation (1). The generating function of plane
partitions in the volume–area–perimeter ensemble is

Pp(p, q, t) =
∑

n,m,k�0

pp(n,m, k)pnqmtk. (3)

Pp(p, q, t) is not known in closed form. However, in some cases the generating functions
of symmetric and boxed plane partitions have been determined [8]. The generating variables
(p, q, t) are conjugate to volume, area and perimeter, respectively.

In this paper we examine scaling of the plane partition generating function in the volume–
area ensemble (that is, the generating function Pp(p, q, 1) ≡ Pp(p, q) where we put t = 1 in
equation (3)). We develop a Metropolis style Monte Carlo algorithm to sample plane partition
vesicles along a Markov chain in the volume–area ensemble, and we collect data to examine
the properties of Pp(p, q).

In section 2 we review the scaling properties of (two-dimensional) partition polygons.
These polygons are convex versions of more general polygons in the square lattice, and such
models have been studied since the 1800s [4, 17, 19–22, 26, 31, 33, 34, 37]. The phase
diagrams of the generating functions of partition polygons1 and other convex lattice polygon
models in the area–perimeter ensemble are known to include multicritical points [5–7], and
in this section we analyse the scaling of the generating functions of partition polygons in the
area–perimeter ensemble, P(q, t), in the context of multicritical scaling assumptions [24].

The phase diagram of partition polygons in an area–perimeter ensemble, illustrated in
figure 5 and discussed in section 2.3, includes a critical curve on which is located a critical
point (tc, qc) corresponding to a first order phase transition between deflated and inflated
partition polygons. The critical curve is composed of essential singularities in the generating
function along the line q = 1, which ends in the critical point (tc, qc) = (1, 1), where the
singularities change over into simple poles along the curve t2q = 1. This point is a tricritical
point, which is defined as the endpoint of a line of first order transitions from which starts
a line of continuous transitions; see [24], and in particular figure 10 in that reference. The

1 The generating function of partition polygons is P(q, t), where q is an area generating variable, and t is a perimeter
generating variable. We shall consistently indicate generating functions of plane partition vesicles by a subscript ‘p’.
For example, Pp(q, t) is the generating function of plane partition vesicles in the area–perimeter ensemble, while
Pp(p, q) is the generating function of plane partition vesicles in the volume–area ensemble.
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phase diagram in figure 5 is unusual [16] in that there is a second point on the critical curve,
not coincident with the tricritical point (1, 1), about which the generating function exhibits
multicritical scaling. We review the scaling around this point and show why the crossover
exponent in this model is generally accepted to be φ = 1/2.

In section 3 we introduce a model of plane partition vesicles and a Metropolis Monte
Carlo algorithm for sampling along a Markov chain in the state space of plane partition
vesicles weighted by volume, area and perimeter. In section 4 we examine the scaling of plane
partition vesicles numerically in the volume–area ensemble. The phase diagram is illustrated
in figure 6, and we discuss it in section 4.1. The critical curve in this model is composed of
essential singularities along p = 1 for 0 � q � 1, and these changes into simple poles along
the curve q4p = 1 if q > 1 in the critical point (qc, pc) = (1, 1). This is a tricritical point,
where a line of first order transitions ends and from which curves of continuous transitions
starts in higher dimensional parameter space [24].

We examine the scaling of the plane partition generating function Pp(1, q) along the
line p = 1 next. Scaling assumptions along this line is analogous to the scaling of partition
polygons, and our data show that Pp(1, q) diverges as q ↗ qt where

qt = 0.846 70 ± 0.000 28, (4)

and we note that qt ≈ √
3/2. This behaviour is consistent with the results for partition

polygons, and is also consistent with multicritical scaling in the vicinity of the point
(qt , pt ) = (qt , 1).

Our simulations provide strong evidence that the mean area of plane partition vesicles
along the line p = 1 diverges as

〈Area〉 ∼ [−log(q/qt )]
−ρ as q ↗ qt , (5)

where ρ = 1.3449 ± 0.0020 ≈ 4/3. This inverse power-law divergence in the mean area has
certain implications for scaling of the generating function, and we use this result to estimate
the value of multicritical scaling exponents in this model.

Next, plane partition vesicles were examined along the line q = qt and 0 < p < 1. We
provide numerical evidence showing that the mean volume of plane partitions diverges as

〈Volume〉 ∼ [−log p]−2 as p ↗ 1. (6)

From these results one may estimate the values of the multicritical exponents numerically. In
particular, we argue that our results are consistent with the scaling

Pp(1, q) ∼ eα/[−log(q/qt )]1/3
/[−log(q/qt )]

2.0 (7)

Pp(p, qt ) ∼ eβ/[−log p]/[−log p]0.88, (8)

of the generating function, where qt ≈ √
3/2. Overall, our results suggest that there is a

multicritical point located at (pt , qt ) = (1,
√

3/2) with a crossover exponent φ approximately
equal to 1/2, in addition to the tricritical point at the endpoint of the line of essential singularities
along p = 1 in figure 6.

A few conclusions are given in section 5. We examine plane partitions briefly from a
perimeter activity point of view. Our algorithm did not converge well in this ensemble, and the
quality of numerical data was not good enough to extract estimates of exponents. However,
our results do show that the generating function Pp(1, 1, t) becomes singular as t approaches
the point t = 3−1/4, and we conjecture that the critical value of the perimeter fugacity t is
given by tt = 3−1/4. This result, together with qt = √

3/2, gives the locations of multicritical
points and scaling regimes in the pq-, pt- and qt-ensembles.
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Figure 2. A partition polygon. Each unit square in this polygon is weighted by the area generating
variable q, and each perimeter edge is weighted by t, the perimeter generating variable.

2. Partition polygons

2.1. The generating function of partition polygons

The two-dimensional version of a plane partition vesicle in a volume–area–perimeter ensemble
is a partition polygon in an area–perimeter ensemble. An example of a partition polygon is
given in figure 2. The area of the polygon is the number of unit squares that paves its interior.
An unpaired edge is an edge in the boundary of a unit square that is incident with only one
unit square in the interior of the partition polygon. The perimeter of the partition polygon is
the union of all unpaired edges, and it is a lattice polygon. The length of the perimeter is the
number of edges in the perimeter.

Partition polygons have been studied as two-dimensional models of vesicles in the 1990s
[3, 5, 7]. The generating function of this model is given by

P(q, t) =
∞∑

n=0

qn2
t4n

(t2q; q)2
n

(9)

where the q-analogue of the factorial is defined by

(t; q)n =
n−1∏
i=0

(1 − tqi), (10)

and q is the area generating variable, while t is the perimeter generating variable.
If t = 1 in equation (9), then the generating function of partitions is obtained [27]. Several

expressions are known, and in particular

P(q, 1) =
∞∑

n=0

qn2

(q; q)2
n

=
∞∏

n=0

1

(q; q)n
. (11)

The asymptotic behaviour of partitions have been extracted from its generating function when
t = 1 by Hardy and Ramanujan [11] who derived the asymptotic formula

pn ∼ 1

4
√

3n
eπ

√
2n/3 (12)

for the number of partitions pn of n [11].
The function P(q, 1) can be approximated by an integral, and a saddle point approximation

[7, 16, 32] of this integral shows that as q → 1−,

P(q, 1) ∼ exp(Li2(q)/|log q|)√|log q| . (13)
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Figure 3. The function f (q), estimated numerically.

The dilogarithm is defined by Li2(q) = ∑∞
m=1 qm/m2, see for example [16] (a factor

of π2/6 was inserted incorrectly in equation (4.23) in that reference). The saddle point
approximation only estimates the dominant part of an integral approximation to P(q, 1), but
this approximation does capture the general behaviour of the function. To illustrate this, define
the function f (q) by

P(q, 1) = exp(Li2(q)/|log q|)
f (q)

√|log q| . (14)

Then f (q) should be bounded as q → 1−. A numerical evaluation of f (q) is plotted in
figure 3.

The Euler–Maclaurin formula may instead be used to determine a uniform asymptotic
expression for log P(q, 1). The result is

log P(q, 1) = Li2(q)

|log q| − log(1 − q)

2
+ R1 (15)

where the remainder is bounded uniformly in [0, 1] by |R1| � 1/12. This result is
consistent with equation (13), and it proves that f (q) is bounded by a constant as q ↗ 1 in
equation (14).

One may similarly determine an approximation to P(q, t) by approximating the series
by an integral and then by estimating the integral with a saddle-point approximation. This
approximation turns out to be in particular valid if t ∈ (1/

√
2, 1) and it is given by [16]

P(q, t) ≈
√

2π(1 − t2)

|log q|(1 − t2q)
exp((Li2(t

2q) + Li2(t
2) + 4(log t)2 − π2/6)/|log q|). (16)

This approximation should be good for q and t smaller than 1 but approaching it. For example,
P(0.95, 0.85) = 1552.21 . . . while equation (16) gives 1517.67, and P(0.95, 0.90) =
2.1491 . . . × 105 while equation (16) gives 2.0760 . . . × 105.

2.2. The critical curve

The critical curve qc(t) of partition polygons in an area–perimeter ensemble is the radius of
convergence of P(q, t), plotted in the tq-plane. It follows directly from equation (9) that

qc(t) =



1, if 0 < t � 1,

1

t2
, if t > 1.

(17)
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1/(1 t2q)
1/(1− t2q2)

1/(1 −t2qn)t4nqn
2

Figure 4. The generating function P(q, t) contains factors t4nqn2
which corresponds to the square

in the left lower corner of this illustration of a partition polygon. The factors 1/(1− t2qn) generate
rectangular parts of arbitrary length in the two ‘arms’ (one horizontal, and the other vertically
oriented) of the partition attached to a square of area n2. By putting q = 1 and summing over n,
the result is equation (18), and the critical point is at tt = 1/

√
2. Increasing t ↗ 1/

√
2 with q = 1

gives divergent factors 1/(1 − 2t2); these correspond to the uncontrolled lengthening of the ‘arms’
in this schematic illustration.

If q = 1, then equation (9) may be evaluated in closed form. The result is

P(1, t) = (1 − t2)2

1 − 2t2
. (18)

This shows that if t ↗ 1/
√

2 along the line q = 1, then P(1, t) diverges. This divergence
in P(1, t) is due to the unbounded expansion of long and thin rectangular sections of the
partition polygon. Thus, along the line q = 1, P (q, t) is finite for t ∈ [0, 1/

√
2), and it has a

simple pole in the t-plane at t = 1/
√

2. For values of t larger than 1/
√

2, P (q, t) is divergent
if q = 1.

Along the curve q = 1/t2 the factor 1/(1 − t2q) diverges in equation (9). This factor
corresponds to a sequence of unit squares, which diverges as t2q → 1− (see figure 4). Thus
P(q, t) is divergent on approach to this curve.

A plot of qc(t) in the qt-plane is the phase diagram of partition polygons. This is given in
figure 5. The generating function also has simple poles in the q-plane at the points t2qn = 1
for n = 1, 2, 3, . . . . In the tq-plane these accumulate on the line q = 1, so that the unit disc
is the natural boundary of the generating function in the q-plane.

The curve qc(t) divides the tq-plane in figure 5 into two phases. The first is a phase of
‘finite’ partition polygons for points (t, q) in the area defined by the region enclosed by the
axes and the critical curve qc(t) (see figure 5). The second phase is the region where (t, q)

is a point above the critical curve qc(t) in figure 5. This is a phase of ‘infinite’ partition
polygons.

2.3. The multicritical scaling of P(q, t)

The phase diagram is plotted in figure 5. The critical curve qc(t) is separated into two parts
by the critical point at (tc, qc). The first part is the line segment along q = 1 and this is a line
of essential singularities in the q-plane corresponding to first order phase transitions (marked
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Figure 5. A schematic plot of qc(t). This is also the phase diagram of partition polygons in an
area–perimeter ensemble, with the phase boundary qc(t) separating a finite and an infinite phase.
The critical curve qc(t) is a line of essential singularities in the generating function from (0, 1)

to the critical point at (1, 1) where it ends in a tricritical point (tc, qc) = (1, 1) and from where
it continues as a curve of simple poles in the generating function along the curve t2q = 1; see
[24]. The generating function is finite on qc(t) for t ∈ [0, tt ), but diverges as eC/|log q|/

√|log q|
for t ∈ [tt , 1). In this model we set up scaling axes at the multicritical point (tt , qt ). The g-axis
is transverse to the critical curve and points down, while the s-axis is along the line q = 1, but
pointing towards the left. The generating function P(q, t) diverges along the g- and s-axes on
approaching the multicritical point. Standard multicritical scaling ansatz indicates that one may
assign the values 2 − αt = −1/2 and 2 − αu = −1 for the multicritical exponents αt and αu. The
crossover exponent can be determined from these values: φ = 1/2 in this model. There is a first
order phase transition in model at the critical point (tc, qc) = (1, 1), where the vesicle undergoes
an inflation–deflation transition.

by τ in figure 5) in the model. This line of first order transitions ends in the tricritical point
(tc, qc) = (1, 1) and continues from there along the curve qt2 = 1 as continuous transitions
(marked by λ in figure 5). This should be compared to figure 10 in [24].

The critical curve qc(t) has two points of potential interest. The first point is the tricritical
point at (tc, qc) = (1, 1). At this point the nature of the singularity along qc(t) changes from
an essential singularity along the line q = 1 to a simple pole along the curve q = 1/t2.
Normally, tricritical scaling is expected in the vicinity of such a point [7, 24, 32].

There is a second point of interest. This is the point on the line q = 1 at (tt , qt ) =
(1/

√
2, 1). At this point the function P(1, t) has a pole in the t-plane (see equation (18))

and as we shall see below, the generating function has asymptotic behaviour in the vicinity
of this point consistent with multicritical scaling [24], and with identifiable multicritical
exponents.

Consider P(q, t) close to the point (tt , qt ) = (1/
√

2, 1). Along the line q = 1 the
generating function P(1, t) diverges as a simple pole as t ↗ 1/

√
2; see equation (18). Along

the line t = 1/
√

2 the behaviour of P(q, t) as q → 1− is given by (16) with t2 = 1/2.
Simplify matters by ignoring those factors in this expression which approach constants as
q → 1−. Then

P(q, 1/
√

2) ∼ 1√|log q| exp(C/|log q|), as q → 1−. (19)

Canonical multicritical scaling assumptions [24] in this model would define two scaling
axes (the g-axis and s-axis) through the point (tt , qt ) = (1/

√
2, 1). The g-axis is transverse to

the critical curve, and the s-axis is tangent to it; as illustrated in figure 10 in [24]. The origin
in the gs-plane is located at the point (t, q) = (1/

√
2, 1). Examination of equations (18)
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and (19) suggests the choices g = |log q| and s = (1 − 2t2) as scaling variables. Then
equations (18) and (19) become

P(1, t) ∼ 1

s
and P(q, 1/

√
2) ∼ 1√

g
eC/g, as g → 0+ and s → 0+. (20)

Multicritical scaling assumptions introduce the exponents 2 −αt and 2 −αu by assuming
that P(g, s) ≡ P(q, t) scales with g and s as power laws given by

P(q, 1/
√

2) = P(g, 0) ∼ g2−αt , as g → 0+,

P (1, t) = P(0, s) ∼ s2−αu , as s → 0+,
(21)

along the g and s axes. These power-law dependences of P(q, t) on g and s close to the point
(g, s) = (0, 0) should be compared to equation (20) to determine the values of 2 − αt and
2 − αu. The scaling assumptions in equation (21) further imply that P(q, t) is a function of a
combined variable g−φs such that there exists a scaling function F(x) such that

P(q, t) ∼ g2−αt F (g−φs). (22)

Consistency with equations (21) requires that

φ = 2 − αt

2 − αu

. (23)

The exponent φ is the crossover exponent describing the crossover of scaling behaviour as the
scaling of P(q, t) around the multicritical point is changed from one scaling direction to the
other.

The scaling laws in equation (21) appear not to describe the scaling of P(q, t) in
equation (20). In particular, there is extra factor of eC/g which modifies the power-law
behaviour (apparently dramatically) as g → 0+, unless C approaches zero fast enough in this
regime. Thus one may propose the alternative scaling relation

P(q, 1/
√

2) = P(g, 0) ∼ g2−αt eC/g. (24)

The function C may be estimated by examining equation (16). Observe that Li2(1/2) =
π2/12 − [log 2]2/2 and assume that q ≈ 1−. Then

Li2(q/2) + Li2(1/2) + [log 2]2 − π2/6 = |log q|log 2 + |log q|2(1 −log 2)/2 + O(|log q|3),
(25)

so that C → 0+, as q → 1−.
In other words C/g = log 2 + g(1 − log 2)/2 + O(g2), and this result shows that the

proposed scaling P(g, 0) ∼ g2−αt eC/g in equation (24) may be reduced to the standard
assumption in equation (21). Some care is necessary though, C/g approaches log 2 linearly
with g, and its effects could influence numerical determinations of P(q, t) even close to the
multicritical point at (tt , qt ) = (1/

√
2, 1).

Thus, one may examine the scaling of partition polygons close to the point at (tt , qt )) =
(1/

√
2, 1) by firstly relying on equation (16) to guess that C/g = log 2 + g(1 − log 2)/

2 + O(g2), or secondly by assuming that C/g ≈ log 2 in equation (24), and then ignoring
the contribution of the exponential factor in equation (24). This would suggest that one may
choose one of two possible scaling assumptions

P(q, t) ∼
{

[1/
√

g] exp((Li2(q/2) + Li2(1/2) + log2 2 − π2/6)/gF (g−1/2s)),

[1/
√

g]F(g−1/2s),
(26)
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Table 1. F(g−1/2s) along the curve g−1/2s = 1.

q t g s F(1) by equation (29)

0.50 0.2893 0.693 1 0.832 6 0.8357
0.60 0.3777 0.510 8 0.714 7 0.7252
0.70 0.4488 0.356 7 0.597 2 0.6206
0.80 0.5136 0.223 1 0.472 4 0.5169
0.90 0.5811 0.105 4 0.324 6 0.4056
0.95 0.6219 0.051 29 0.226 5 0.3393
0.97 0.6424 0.030 46 0.174 5 0.3067
0.99 0.6707 0.010 05 0.100 3 0.2633
0.995 0.6816 0.005 013 0.070 80 0.2472
0.999 0.6958 0.001 001 0.031 63 0.2266
0.9995 0.6992 0.000 5001 0.022 36 0.2218

in the vicinity of the point (tt , qt ) = (1/
√

2, 1) where F(x) is some universal function
approaching a constant as x → 0+, and which describes crossover scaling. Comparison with
equations (16) and (20) shows that

2 − αt = −1/2, 2 − αu = −1, φ = 1/2 (27)

where the crossover exponent φ was determined from equation (23).
Equation (22) indicates that one should be interested in the behaviour of P(q, t) along the

curves g−1/2s = const. Then F(g−1/2s) is constant, and the square root scaling in g should
be exposed. In table 1 the numerical approximation to F(g−1/2s) is given along the curve
g−1/2s = 1. One would expect F(g−1/2s) to approach a non-zero constant as q → 1− along
the curve g−1/2s = 1 for both the expressions

F(g−1/2s) ∼ √
g exp(−(Li2(q/2) + Li2(1/2) + log2 2 − π2/6)/g)P (q, t) (28)

and

F(g−1/2s) ∼ √
gP (q, t). (29)

Observe that as q → 1− and as the multicritical point (tt , qt ) = (1/
√

2, 1) is approached, then
both the expressions above approach constants, but there are also unaccounted for corrections
in this scaling.

Next, consider the tricritical point at (tc, qc) = (1, 1). One may set up a g-axis by
defining the coordinate g = |log q|. Since Li2(g) = |log q| + |log q|2/4 + O(|log q|2), the
approximation in equation (13) may be written in terms of the scaling field g as

P(q, 1) ∼ exp(1 + |log q|/4)√
g

= e1+g/4

√
g

. (30)

This shows a power-law divergence in P(q, 1) as q → 1− similar to equation (20); one may
assign the value 2 − αt = −1/2 here as well.

It is not possible to define a second scaling axis at this point as we did at the point
(tt , qt ) = (1/

√
2, 1). P(q, t) is already infinite along q = 1 close to t = 1, and there is no

scaling along this axis. Overall the situation is as illustrated in figure 5. There is multicritical
scaling around the point (tt , qt ) = (1/

√
2, 1). However, this point does not coincide with

the critical point at (tc, qc) = (1, 1) at which the system exhibits a phase transition between
deflated and inflated phases. The model of partition polygons is atypical in this respect, and
it shares this feature with stack polygons [16].
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Lastly, the inverse square root scaling in the g-coordinate is apparently preserved along
the line q = 1 for t ∈ [1/

√
2, 1]. In this sense one may argue that the multicritical scaling

region extends in the vicinity of the line segment q = 1 and t ∈ [1/
√

2, 1] in this model.

2.4. The limiting free energy of partition polygons

The limiting free energy of partition polygons is defined by first defining the partition function

Zn(t) =
∞∑

m=0

p(n,m)tm (31)

where p(n,m) is the number of partition polygons of area n and perimeter m. The limiting
free energy is defined from the partition function in the usual way:

F(t) = lim
n→∞

1

n
log Zn(t). (32)

It follows directly from the definition of P(q, t) that

F(t) = −log qc(t) (33)

where qc(t) is the radius of convergence of P(q, t) which we determined above.
In this model,

F(t) =
{

0, if 0 < t � 1,

2 log t, if t > 1.
(34)

There is a non-analyticity at t = 1 in this function: at this point there is a first order
phase transition in the model from inflated partition polygons with large area (dominating the
generating function along the line q = 1) to deflated polygons with small area along the curve
q = 1/t2.

The crossover exponent is related to α, the specific heat exponent, through the hyperscaling
relation 2−α = 1/φ, and this shows that α = 0 in this model. However, it is not clear that this
estimate of α, made by examining multicritical scaling in the vicinity of the point (tt , qt ), is
associated with the thermodynamics of the phase transition in partition polygons at the critical
point (tc, qc).

3. Monte Carlo simulations of plane partitions

We now turn our attention to plane partition models of three-dimensional lattice vesicles. Less
is known about these models, and it is not possible to give an explicit analysis of multicritical
scaling in this model as we did for partition polygons in section 2. Instead, we approach the
model numerically.

A Monte Carlo sampling scheme for plane partition vesicles can be implemented via the
Metropolis algorithm to sample plane partitions along a Markov chain. The plane partition
vesicles will be weighted by volume, area and perimeter activities (p, q, t).

The state space of the algorithm will be the set of all plane partitions endowed with the
distribution

D(p, q, t) = pp(n,m, k)pnqmtk

Pp(p, q, t) − 1
(35)

where Pp(p, q, t) − 1 is the normalizing factor given by equation (3), and pp(n,m, k) is
the number of plane partitions with volume n, area m and perimeter k. We subtract 1 in the
denominator because the algorithm will not be able to generate the empty plane partition.
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Algorithm plane partition is implemented as follows:

Algorithm plane partition. Suppose that states ρ1, ρ2, ρ3, . . . , ρn have been sampled along a
Markov chain by algorithm plane partition, and that ρn is the current state. Suppose that the
volume of ρn is V (ρn), that its area is A(ρn), and that its perimeter is S(ρn).

Then state ρn+1 is constructed as follows:

1. Select one of the XY -, XZ- or YZ-planes with probability 1/3, and project ρn onto it.
The image is a partition P of area (say) α.

2. Choose a unit square σ with uniform probability in P. This square is the projected image
of a column γ of unit cubes in ρn. Let the height of this column be h(S).

3. With probability 1/2 attempt to remove the top unit cube in γ ; this will reduce h(S) by 1.
Alternatively, with probability 1/2 attempt to add a unit cube onto the top of γ ; this will
increase h(S) by 1.

4. If the operation in step 3 produces an object which is not a plane partition, or if it changes
the projection of ρn (this could occur if ρ(S) = 1, and a cube is removed), then reject the
attempted move. Put ρn+1 = ρn to find the next state and go to step 1.

5. Otherwise, a possible next state ρ ′ is obtained. Accept ρ ′ as the next state with probability

P(ρn → ρ ′) = min
{
1, pV (ρ ′)−V (ρn)qA(ρ ′)−A(ρn)tS(ρ ′)−S(ρn)

}
(36)

by generating a random number x and putting ρn+1 = ρ ′ if x � P(ρn → ρ ′), and
ρn+1 = ρn otherwise.

6. The new current state is then ρn+1. Continue the sampling by returning to step 1 until a
desired number of states are sampled.

Algorithm plane partition is irreducible since any plane partition can be reduced to a single
cube by applying the elementary move. The rejection technique ensures that the algorithm is
aperiodic, so that the algorithm is ergodic. Next, it may be checked that the algorithm satisfies
a condition of detailed balance given by

pV (ρn)qA(ρn)tS(ρn)P (ρn → ρn+1) = pV (ρn+1)qA(ρn+1)tS(ρn+1)P (ρn+1 → ρn). (37)

Thus, by the fundamental theorem of Markov chains, the invariant distribution of algorithm
plane partition is given by equation (35).

Sampling with the algorithm realizes a stationary Markov chain of states {ρn}. If X is an
observable along this chain, then its mean 〈X〉 is estimated by the unbiased average

〈X〉N = 1

N

N∑
i=1

X(ρi). (38)

A 67% statistical confidence interval can be estimated from the standard deviation σ of the
chain, estimated by

σ 2
N = 1

N − 1

N∑
i=1

(X(ρi) − 〈X〉)2 (39)

where 〈X〉 may be replaced by 〈X〉N for large N as a good approximation. Then σN → σ as

N → ∞, and for large N the 67% confidence interval is approximated well by
√

2τσ 2
N where

τ is the autocorrelation time measured along the Markov chain. For details, see [28].
The algorithm was tested by generating plane partition vesicles with distribution

D(p, 1, 1) (see equation (35)). The mean volume of plane partition vesicles generated by
the algorithm at activity p is given by

Vp = d

d log p
log(Pp(p, 1, 1) − 1). (40)
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Table 2. Plane partition volumes by Monte Carlo.

p Volume by algorithm Vp by equation (40)

0.60 17.924 ± 0.069 17.87
0.70 52.65 ± 0.26 52.75
0.80 215.80 ± 0.78 216.0
0.85 562.9 ± 6.1 559.6
0.90 2056 ± 11 2055

This may be estimated numerically for given p, and the results may be compared to estimates
computed by algorithm plane partition. These quantities are listed in table 2. The error bars
in that table are 67% statistical confidence intervals. These data verify the algorithm.

4. Numerical simulations of plane partition vesicles

The determination of the phase diagram and multicritical scaling of plane partition vesicles
should ideally be approached as in section 2. Unfortunately, the generating function in the
volume–area–perimeter ensemble is only partially known for this model, and is given by
equation (1). Analysing Pp(p) would give information about scaling along the p-axis; but it
would not be possible to determine scaling and crossover exponents in the model if area and
perimeter generating variables are also introduced. Moreover, the location of a multicritical
point or region is not known; this considerably complicates matters.

4.1. Plane partition vesicles in the volume-area ensemble

Consider Pp(p, q, t) in equation (3) and consider the case that t = 1. Define the generating
function Pp(p, q) ≡ Pp(p, q, 1). The maximum area of a plane partition composed of n unit
cubes is 4n + 2 (when the plane partition is a straight row of n cubes). This shows that

Pp(p, q) �
∑
n>0

pnq4n+2, (41)

and the series Pp(p, q) is divergent if pq4 > 1.
On the other hand, there exists plane partition vesicles of volume n3 and area 6n2 (these

are cubical in shape), so that

Pp(p, q) >
∑
n>0

pn3
q6n2

. (42)

Thus the generating function is divergent if p > 1. Observe also that

Pp(p, q) �
∑
n�0

pp(n)pnq4n+2 if q � 1, (43)

where pp(n) is the number of plane partitions of volume n. Since pp(n) ∼ eo(n) by
equation (2), it follows that Pp(p, q) < ∞ if pq4 < 1 and q � 1. Thus, the radius of
convergence of Pp(p, q) is given by

pc(q) =



1, if q � 1,

1

q4
, if q > 1.

(44)

This is the critical curve of Pp(p, q) in the pq-plane.
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Figure 6. A schematic plot of pc(q). This is also the phase diagram of plane partition polygons in
a volume–area ensemble, with the phase boundary pc(q) separating a finite and an infinite phase.
pc(q) is a line of essential singularities in the generating function from (0, 1) to the tricritical
point (qc, pc) = (1, 1), and it continues as a curve of poles in the generating function along the
curve q4p = 1. Along pc(q) the generating function is finite for q ∈ [0, qt ), but it diverges
for q ∈ [qt , 1). Multicritical scaling is found around the point (qt , pt ) ≈ (0.866, 1). We set
up scaling axes at the multicritical point (qt , pt ) with the g-axis transverse to the critical curve
and pointing down, while the s-axis is along the line p = 1, but pointing towards the left. The
generating function Pp(p, q) diverges along the g- and s-axes on approaching the multicritical
point. Standard scaling assumptions show that Pp(p, q) ∼ g2−αt along the g-axis as g → 0+,
while Pp(p, q) ∼ s2−αu along the s-axis as s → 0+ and our simulations show that 2−αt ≈ −0.88
and 2 − αu ≈ −2.0. The crossover exponent can be determined from these results: we found that
φ ≈ 0.44.

Arguments similar to the above show that the curves pq4m = 1 are singular curves in the
pq-plane. For q � 1 these accumulate on p = 1, so that the line p = 1 is a locus of essential
singularities in Pp(p, q). We shall provide numerical evidence below that Pp(1, q) < ∞ if
0 � q < qt , and the value of qt will be estimated by statistical analysis of our data.

The phase diagram is plotted in figure 6. The critical curve pc(q) is separated into two
parts by the critical point at (qc, pc). The first part is the line segment along p = 1 and this is
a line of first order phase transitions (marked by τ in figure 6) which ends in a tricritical point
at (qc, pc) = (1, 1). The critical curve continues from this point in a curve of simple poles
which is a λ-line of continuous transitions. The phase diagram is illustrated in figure 6, which
should be compared to figure 10 in [24].

4.1.1. The area of plane partition vesicles along p = 1. The behaviour of the generating
function Pp(p, q) close to the point at (q, p) = (qt , 1) should be analysed to determine
the scaling properties of plane partitions. Define the scaling field s = (qt − q) (so that
s ≈ −log(q/qt ) as q approaches qt ), then equation (30) suggests that

Pp(1, q) ∼ eαs

sγs
as q ↗ qt , (45)

where α is a constant, and γs an exponent to be determined. The mean area of plane partition
vesicles along the line p = t = 1 and 0 � q < qt is given by the derivative of log Pp(1, q) to
log q. Assuming that there is a constant C so that Pp(1, q) = C eαs/sγs then suggests that

〈Area〉 ≈ qt

(γs

s
− α

)
. (46)

In other words, the area should diverge proportional to γs/s as the critical point is approached.
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Figure 7. The logarithm of the mean area of plane partition vesicles for p = t = 1 as a function
of log |log(q/qt )|. The critical value of q is qt ≈ 0.846 70, and this was determined by a least
squares analysis of these data points assuming the model in equation (47).

In figure 7 the results of a simulation with p = t = 1 and q � qt using algorithm
plane partition are displayed. By examining equation (46), and by noting that −log(q/qt ) ≈
(1 − q/qt ), the mean area data should be described by the model

log〈Area〉 = A − log(−log(Bq)) + C log q + D log2 q. (47)

While there are obvious short-comings in this model (the coefficient of the term log(−log(Bq))

is fixed at 1); the main purpose here is the determination of B, and this will fix the value of qt .
Since the term log(−log(Bq)) is the only divergent term on the right-hand side, and since the
divergence in log〈Area〉 is expected to be proportional to log(−log(Bq)), one may assume
that a successful least squares analysis with this model should approximate the location of the
multicritical point qt = 1/B.

Least square fits of the data to the model in equation (47) were performed to estimate B.
The least squares error χ2

N on N degrees of freedom was tracked to determine goodness-of-fit
while data were discarded at values of q less than some minimum cutoff qmin. χ2

N is distributed
as a χ2-statistic on N degrees of freedom, and a fit was deemed statistically acceptable if χ2

N

is acceptable at the 95% level.
Acceptable fits were found for qmin � 0.7967. For qmin = 0.7967 the least square error

was χ2
13 ≈ 13.0 on 13 degrees of freedom, acceptable at the 55.2% level. In this case, the

estimate for B is B = 1.181 05 ± 0.000 38. Discarding another data point by increasing qmin

to 0.8011 produced B = 1.181 24 ± 0.000 40 with χ2
12 = 12.3 on 12 degrees of freedom,

acceptable at the 57.7% level. Thus, our best estimate for B is

B = 1.181 05 ± 0.000 38. (48)

Since B = 1/qt , this estimate gives

qt = 0.846 70 ± 0.000 28 (49)

for the critical point qt . The location of this critical point is close to
√

3/2 = 0.866 025 . . . ,

but the error bar (which is one standard deviation) excludes this value. However, we are not
able to account for sources of possible systematic errors due to inadequacies in our model,
and so we cannot rule out the possibility that qt = √

3/2.
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The results above do not verify the assumption in equation (45). By assuming that 1/qt =
1.181 05 ± 0.000 38 determines the location of the critical point, and by approximating
−log(1.181 05q) ≈ (1 − 1.181 05q), a suitable alternative model for the mean area of plane
partition vesicles is

log〈Area〉
log(1 − 1.181 05q)

= α

log(1 − 1.181 05q)
− ρ + C log(1.181 05q) + D log2(1.181 05q),

(50)

which includes terms to account for deviations from linearity in figure 7 for small values of q.
The value of ρ should be determined by a linear regression. Acceptable least squares

fits were obtained for qmin = 0.7145 (χ2
18 ≈ 23.9, acceptable at the 84.7% level), where

ρ = 1.3449 ± 0.0020. For qmin = 0.7361, the regression shows that ρ = 1.3438 ± 0.0024,
and for qmin = 0.7578, ρ = 1.3396 ± 0.0030. In other words, these results are consistent and
our best estimate for ρ is

ρ = 1.3449 ± 0.0020. (51)

Since ρ ≈ 4/3, the mean area diverges as q ↗ qt by

〈Area〉 ∼ [−log(q/qt )]
−ρ (52)

where qt = 0.846 70 ± 0.000 28 ≈ √
3/2 and where one may conjecture that ρ = 4/3.

This result has implications for the assumption in equation (45). A divergence of the area
proportional to s−4/3 can be obtained if we assume that

Pp(1, q) ∼ eα/s1/3

sγs
(53)

instead. This assumption modifies the divergence of the mean area to

〈Area〉 ≈ qt

( α

3s4/3
+

γs

s

)
, (54)

where s = (qt − q) ≈ log(qt/q) when q ↗ qt .
To determine the exponent γs in equation (45) is numerically much more difficult. Its

contribution to the mean area is secondary to the primary contribution made by the exponential
term. By equation (54), one may examine the model

s4/3〈Area〉 = A + qt s
1/3γs + Cs + Ds2. (55)

Linear least squares analyses gave estimates for γs , and the quality of the estimates
deteriorated quickly with increasing qmin. A regression with qmin = 0.1732 has χ2

26 = 31.9
acceptable at the 80.3% level. This gives qtγs = 1.633 ± 0.033. Increasing qmin =
0.2598 gives qtγs = 1.772 ± 0.048, and this estimate excludes the first by more than
two standard deviations. Further increases in qmin gives the estimates 1.631 ± 0.065,
1.735 ± 0.086, 2.08 ± 0.13, 2.55 ± 0.21, 2.48 ± 0.37 and 2.73 ± 0.48. The last estimate
contains all but smallest few of the previous within its 95% confidence interval. In fact,
increasing qmin again gives the smaller estimates 2.11 ± 0.65 and 1.14 ± 0.98. All these
results are statistically acceptable. If a weighted average is taken over all these results, then
qtγs ≈ 1.7, with an unknown statistical and systematic error. In other words, the spread of
results for γs has such large statistical uncertainties that they do not differ statistically from
the results of the regressions at small qmin. Thus we take as our best estimate qtγs ≈ 1.7, and
if we assume that qt = √

3/2, then

γs ≈ 2.0. (56)
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Figure 8. The logarithm of the mean volume of plane partitions as a function of log |log p|. The
data denoted by ◦’s were obtained by putting q = qt ≈ 0.866 and t = 1, while the data denoted
by •’s were obtained when q = t = 1.

4.1.2. The volume of plane partition vesicles along q = qt . Next, we put q = qt and consider
the volume of plane partition vesicles as p ↗ 1. While our best estimate for qt in equation (49)
is slightly smaller than

√
3/2 ≈ 0.866, we approximated qt by 0.866 and collected data. Our

results are plotted in figure 8.
As before, we define Pp(p, qt ) ≡ Pp(p, qt , 1). In analogy with equation (30) one may

assume that

Pp(p, qt ) ∼ eαg

gγg
, (57)

where g = −log p is the scaling field, and where α is a constant and γg is an exponent. This
assumption suggests that the mean volume of plane partition vesicles along the line q = qt

diverges as 〈Volume〉 ∼ γg/g − α. However, this model did not describe the data in figure 8
well. We could not perform least squares regressions that were statistically acceptable. Instead,
exploratory calculations suggested that 〈Volume〉 ∼ 1/g2. This would be consistent with the
ansatz that

Pp(p, qt ) ∼ eα/g

gγg
, (58)

and if we assume that Pp(p, qt ) = Ceα/g/gγg , then this predicts that

〈Volume〉 ≈ α

g2
+

γg

g
. (59)

Thus, a suitable model for the divergence in the mean volume of plane partition vesicles
along the line q = qt and t = 1 is

log〈Volume〉 = A + B log(−log p) + C log p + D log2 p, (60)

where B should be equal to −2. Our data fit this model well, and acceptable regressions
were obtained by discarding data at values of p less than pmin = 0.5. In this regression,
B = −1.971 ± 0.012 with least squares error χ2

12 = 19.2 acceptable at the 91.5% level. If
pmin = 0.6, then B = −2.018 ± 0.017 with χ2

11 = 11.3, acceptable at the 57.5% level. These
results are consistent with the assumption in equation (58).
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Next, we attempt to determine the exponent γg in equations (58) and (59). Equation (59)
suggests that

g2〈Volume〉 = α + γgg + Cg2 + Dg3 (61)

as a suitable model for the data. The data fit this model well, and acceptable regressions
were found by discarding data points at small values of p less than pmin = 0.2. This
gives γg = 0.945 ± 0.012 with weighted least squares error χ2

16 = 24.5 acceptable at the
91.9% level. Increasing pmin = 0.3 gives γg = 0.904 ± 0.016, and for pmin = 0.4 one
obtains γg = 0.867 ± 0.023. The last estimate includes the previous in its 95% confidence
interval, but excludes the first estimate. Hence, there appears to be a systematic drift
in the estimate as pmin is increased, and we assume the estimate at pmin = 0.3 (where
γg = 0.904 ± 0.016) as our first reliable estimate. Increasing pmin further to 0.5, 0.6 and 0.7
gave γp = 0.851 ± 0.035, γp = 0.754 ± 0.058 and γp = 0.689 ± 0.093, respectively. In each
case the estimate includes the previous in its 95% confidence interval, but there appears to be
still a downwards trend, offset in some respect by a quickly rising confidence interval. By
taking the weighted average of these results for 0.3 � pmin � 0.7, our best estimate for γg is

γg ≈ 0.88. (62)

4.1.3. The volume of plane partition vesicles along q = 1. Next we consider the mean
volume of plane partition vesicles along the line q = t = 1. Data on the mean volume of
plane partition vesicles were collected in this ensemble and are plotted in figure 8. The model

log〈Volume〉 = A + B log(−log p) + C log p + D log2 p (63)

is again successful at modelling the data. A weighted least squares regression is acceptable
at the 33.4% level if data corresponding to p < pmin = 0.4 are discarded

(
χ2

14 = 11.3
)
, in

which case B = −2.881 ± 0.010. Increasing pmin = 0.5 shows that B = −2.909 ± 0.015,
acceptable at the 17.1% level and consistent with the result at pmin = 0.4. This result is
consistent with the ansatz that

Pp(p, 1) ∼ eα/gκ

gγ ′
g

, (64)

where g = −log p is the scaling field, and where the exponent κ should have value close to
1.9 (since the regression above shows that B ≈ −2.881). In particular, it seems plausible that
κ = 2.

It is possible to test this prediction directly by approximating Pp(p, 1) using the Euler–
Maclaurin formula. Direct computation shows that

log Pp(p, 1) = Li2(p)

|log p| +
Polylog(3, p)

|log p|2 − log(1 − p)

2
+ R1 (65)

where Polylog(m, p) = ∑∞
j=1 pj/jm is the polylog-function and where the remainder term

R1 is bounded by

|R1| � |log(1 − p)| +

∣∣∣∣p log p

1 − p

∣∣∣∣  |log(1 − p)| as p ↗ 1. (66)

This approximation is not uniform, but is still very accurate. For p = 0.9 we obtain
Pp(0.9, 1) = 107.93 . . . while the approximation gives 108.04 . . . and the bound on R1 is
0.27 . . . . For p = 0.99 we get Pp(0.99, 1) = 11 899.91 . . . , the approximation is 11 900.21 . . .

and the remainder term is bound by 0.46 . . . .
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Since both Li2(p) and Polylog(3, p) are finite at p = 1, we get that Pp(p, 1) is given by

Pp(p, 1) ≈ exp(α0/g + α1/g
2)√

gf (g)
(67)

where we approximate g = −log p ≈ 1 − p, and where by examining R1, f (g) ∼ g. This
result would replace κ in equation (64) by 2 (as we expected), and assign the value γ ′

g = 3/2
to the exponent.

4.1.4. Discussion. The assumptions in equations (45), (58) and (64) have certain
consequences for the scaling of the area and volume of plane partition vesicles. In particular,
along the line p = t = 1 and q < qt , one expects the mean area to diverge as in equation (46),
and the mean volume to diverge along the line q = qt , t = 1, and p < 1 as in equation (59).
Scaling assumptions in equation (21) can be compared with equations (45) and (58). In this
case we note that the scaling uncovered by the numerical simulations are reminiscent of the
scaling observed in partition polygons in equations (19) and (20). In particular, the critical
value of q if p = 1 is qt = 0.846 70 ± 0.000 38 while the critical curve is given by p = 1 if
q � 1 and p = 1/q4 if p > 1. This is illustrated in figure 6.

Multicritical scaling is exhibited in the vicinity of the point (qt , pt ) ≈ (
√

3/2, 1), and the
multicritical scaling exponents of this scaling is approximated by

P(1, q, 1) ∼ eα/s1/3

s2.0
, where s = −log(q/qt ); (68)

P(p, qt , 1) ∼ eβ/g

g0.88
, where g = −log p. (69)

Thus, one may identify the exponents

2 − αu ≈ −2.0, 2 − αt ≈ −0.88, (70)

and approximate the crossover exponent

φ = 2 − αt

2 − αu

≈ 0.44. (71)

This is sufficiently close to 1/2 that one may make the qualified conjecture that φ = 1/2 in
this model.

5. Conclusions

In this paper we first reviewed the multicritical scaling of partition polygons, and used those
results to examine the presumed multicritical scaling of plane partition vesicles by numerical
means. Our main result is that the generating function Pp(p, q) exhibits multicritical scaling
close to the point (q, p) = (

√
3/2, 1). This point does not coincide with the critical point at

(qc, pc) = (1, 1) where there is a thermodynamic phase change in the model, and which is
also a tricritical point in the phase diagram. At this point the vesicles undergo an inflation–
deflation transition, and the nature of the singularities in the generating function along the
critical curve changes from essential singularities into simple poles. The multicritical scaling
regime however is displaced to a different location near the point (qt , pt ) = (

√
3/2, 1) not

coincident with the tricritical point.
In equations (45) and (58) scaling assumptions for the generating function close to the

multicritical point is made which are consistent with our numerical data. These assumptions
allow the estimation of the crossover exponent φ, which apparently should be close to 1/2.
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Figure 9. The logarithm of the mean perimeter of plane partition vesicles as a function of
log |log(t/tt )| for p = q = 1 and where tt ≈ 0.7541.

Plane partition vesicles should also be considered in the qt- and pt-planes. These require
the simulation of plane partition vesicles as a function of t with p = q = 1 to determine the
multicritical value tt of t. Analogous to equation (45), one may propose that

Pp(1, 1, t) ∼ eαgt

g
γt

t

as t ↗ tt , (72)

where γt is a critical exponent to be determined. The scaling field gt should be proportional
to tt − t or to −log(t/tt ), and α is a constant. Taking the derivative to gt of log Pp(p, q, t)

shows that the mean perimeter of plane partitions increases as

〈Perimeter〉 = tt

(
γt

gt

− α

)
. (73)

In other words, the perimeter should diverge inversely proportional to gt as the critical value
of t is approached when p = q = 1.

We collected data on the mean perimeter of plane partition vesicles over several runs with
p = q = 1. Numerical convergence was very slow, and only with a tremendous amount of
computer time did we succeed in collecting the data in figure 9. There is a sharp transition when
t is close to tt , and our data suggest that tt ≈ 0.75. For t > 0.74, each data point corresponds
to a Monte Carlo simulation with 5 × 1010 attempted elementary moves. Autocorrelation
times quickly increased in this regime, and the quality of the measurements deteriorated with
increasing t. The largest value of t plotted in figure 9 is t = 0.7465, still well short of 0.75.

Nonlinear least squares analysis of the data, assuming the model

log〈Perimeter〉 = A − log(−log(Bt)) (74)

were generally not successful. We adapted this to the assumption

log〈Perimeter〉 = A − C log(−log(Bt)) (75)

and performed least squares analysis. The least square error was tracked as a function of the
minimum value of t in the data. We discarded data at small values of t until a fit acceptable at
the 95% level was obtained. The fits were unacceptable until tmin = 0.675, where χ2 ≈ 10.2
on 9 degrees of freedom, acceptable at the 66.6% level. In this case the parameters were
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B = 1.3260 ± 0.0012 and C = 0.2658 ± 0.0076 (95% confidence intervals). We observed
that by increasing tmin yet again, that these estimates remained inside their confidence intervals,
and we accepted these as our best estimates.

Our best estimate for tt is tt = 1/B = 0.754 14 ± 0.000 64. A heuristic argument similar
to that for partition polygons (see figure 4) suggests that tt = 3−1/4 = 0.7598 . . . . This value is
outside the confidence interval of our estimate, but we did not consider the effects of systematic
errors in our data. The power-law dependence in equation (75) is similar to the assumption in
equation (52) for the mean area of plane partition vesicles. However, our data were not secure
enough for a confident conjecture on the power-law dependence of the mean perimeter.

By approximating −log(t/tt ) ≈ (1 − t/tt ), a suitable model of the mean perimeter of
plane partition vesicles would be

log〈Perimeter〉
log(1 − t/tt )

= α

log(1 − t/tt )
− β + C(1 − t/tt ) + D(1 − t/tt )

2. (76)

The value of β can be determined by a linear least squares analysis of the data. Acceptable
regressions were obtained with tmin = 0.20 (χ2

16 ≈ 11.82, acceptable at the 25% level) where
β = 0.1891 ± 0.0010. Increasing tmin to 0.30 gives β = 0.1899 ± 0.0019 acceptable at
the 30% level on 15 degrees of freedom. Thus, β is close to 1/5, and it appears that
the mean perimeter diverges as 〈Perimeter〉 ∼ [−log(t/tt )]−1/5. However, the data on the
mean perimeter of plane partition vesicles were not convincing, and this estimate should be
considered as a preliminary result.
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